Parity Combination Cordial Labeling for Some Standard Graph

Soni Devyani Vinodkumar(1), Dr.Ritu Khanna(2), Dr. P.H. Bhathawala(3)
(1)Research Scholar at Pacific University, Udaipur
(2)Professor,Department of Mathematics,Pacific University, Udaipur.
(3)Professor \& Former Head,Department of Mathematics, V.N.S.G. University, Surat.

Abstract

: In this paper we investigate parity combination cordial labeling for some graphs obtained by duplication of graph elements and also we drive some results for $K_{1, n}$.and $K_{2, n}$.

Keywords:

Graph labeling, parity combination cordial labeling, parity combination cordial graph, duplication.

1.Introduction

All graph in this paper are finite, simple, undirected graph $G=(V, E)$, With the vertex set V and the edge set E If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling. Throughout this work $K_{2, n}$ denotes the bipartite graph in which $M=\left\{u_{1}, u_{2}\right\}$ and $N=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are two partite sets of $K_{2, n}$ such that each edge has one end in M and the other end in $\mathrm{N}, K_{1, n}$ denotes the bipartite graph in which $M=\left\{v_{0}\right\}$ and $N=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are two partite sets of $K_{1, n}$ such that each edge has one end in M and the other end in N, C_{n} denotes the cycle with n vertices and P_{n} denotes the path on n vertices. The notion of parity combination cordial labeling was introduced by R. Ponraj, S. Narayanan and Ramasamy [9].In this paper we investigate parity combination cordial labelings for a duplication of graph elements in $K_{1, n} \cdot$ and $K_{2, n}$

Definition 1.1: let G be a (p, q) graph. Let f be an injective map from $V(G) V(G)$ to $\{1,2,3, \ldots, P\}$. For each edge $x y$, assign the label $\frac{x}{y}$ or $\frac{y}{x}$ according as $x>y$ or $y>x, f$ is called a parity combination cordial labeling (PCClabeling) if f is a one to one map and
$\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $e_{f}(0)$ and $e_{f}(1)$ denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC- graph).

Definition 1.2: Duplication of a vertex v of graph G produces a new graph G^{\prime} by adding a new vertex v^{\prime} such that $N\left(v^{\prime}\right)=N(v)$. In other words a vertex v^{\prime} is said to be duplication of v if all the vertices which are adjacent to v in G are also adjacent to v^{\prime} in G^{\prime}.

Definition 1.3: Duplication of a vertex v_{k} by a new edge $e=v^{\prime}{ }_{k} v^{\prime \prime}{ }_{k}$ in a graph G produced a new graph G^{\prime} such that $N\left(v_{k}^{\prime}\right)=\left\{v_{k^{\prime}} v_{k}{ }_{k}\right\}$ and $N\left(v^{\prime \prime}{ }_{k}\right)=\left\{v_{k^{\prime}} v_{k}\right\}$.

Definition 1.4: Duplication of edge $e=u v$ by a new vertex w in a graph G produces a new graph G^{\prime} such that $N(w)=\{u, v\}$.

Definition 1.5: Duplication of an edge $e=u v$ of a graph G produces a new graph G^{\prime} by adding an edge $e^{\prime}=u^{\prime} v^{\prime}$ such that $N\left(u^{\prime}\right)=N(u) \cup\left\{v^{\prime}\right\}-\{v\}$ and $N\left(v^{\prime}\right)=N(v) \cup\left\{u^{\prime}\right\}-\{u\}$.

2. Main results

Duplication of graph elements in $K_{2 . n}$

Throughout this work $K_{2, n}$ denotes the bipartite graph in which $M=\left\{u_{1}, u_{2}\right\}$ and $N=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are two partite sets of $K_{2, n}$ such that each edge has one end in M and the other end in N.

Theorem 2.1 The graph obtained by duplication of a vertex from N in $K_{2, n}$ is a parity combination cordial graph where $n \not \equiv 0(\bmod 4)$.

Proof The result is obvious for $n=1$ as when we duplicate v_{1}, the resulting graph will be a cycle C_{4}, which is a parity combination cordial graph. .

Let $u_{1}, u_{2}, v_{1}, v_{2}, v_{3} \ldots v_{n}$ be the consecutive vertices of $K_{2, n}$ and G be the graph obtained by duplication of the vertex v_{j} by a vertex $v_{j}{ }_{j}$. Then G is a graph with $n+3$ vertices and $2(n+1)$ edge.

$$
|V(G)|=n+3 ;|E(G)|=2(n+1)
$$

Then define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follow

$$
\begin{gathered}
f\left(u_{1}\right)=1 \\
f\left(u_{2}\right)=2 \\
f\left(v_{j}\right)=j+2 ; \forall j=1,2, \ldots, n \\
f\left(v_{j}^{\prime}\right)=n+3
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$.
Hence, G is a PCC-graph.

Illustration: A parity combination cordial labeling of the graph obtained by duplication of a vertex from N in $K_{2,5}$ is shown in Figure .

Figure 2.1: A PCC-labeling of the graph obtained by duplication of a vertex from N in $K_{2,5}$

Theorem 2.2 The graph obtained by duplication of a vertex by an edge from M in $K_{2, n}$ is a parity combination cordial graph.

Proof : Let G be a graph obtained by duplication of one of the vertices from M in $K_{2, n}$ by an edge $e=u_{1}^{\prime} u_{1}{ }_{1}$. Without loss of generality we duplicate u_{1} by an edge $e=u_{1}^{\prime} u^{\prime \prime}$. Then the resultant graph G will have $n+4$ vertices and $2 n+3$ edges.

$$
|V(G)|=n+4 ;|E(G)|=2 n+3
$$

We have the following cases
Case (i): For $n=1,5$
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+4\}$ as follows

$$
\begin{gathered}
f\left(u_{1}\right)=1 ; \\
f\left(u_{2}\right)=3 ; \\
f\left(v_{1}\right)=2 ; \\
f\left(v_{j}\right)=j+2 ; \forall j=2,3, \ldots, n ; \\
f\left(u_{1}^{\prime}\right)=n+3 ; \\
f\left(u_{1}^{\prime \prime}\right)=n+4
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=1$
Hence, G is a PCC-graph.
Case (ii): F or $n \neq 1,5$
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+4\}$ as follows

$$
\begin{gathered}
f\left(u_{1}\right)=1 ; \\
f\left(u_{2}\right)=2 ; \\
f\left(v_{j}\right)=j+2 ; \forall j=1,2,3, \ldots, n ; \\
f\left(u_{1}^{\prime}\right)=n+3 ; \\
f\left(u_{1}^{\prime \prime}\right)=n+4
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=1$
Hence, G is a PCC-graph.

Illustration. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge $e=u^{\prime}{ }_{1} u^{\prime \prime}{ }_{1}$ from M in $K_{2,5}$ is shown in Figure .

Figure 2.2: A PCC-labeling of the graph obtained by duplication of a vertex by an from M in

$$
K_{2,5}
$$

Illustration. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge $e=u^{\prime}{ }_{1} u^{\prime \prime}{ }_{1}$ from M in $K_{2,4}$ is shown in Figure

Figure 2.3: A PCC-labeling of the graph obtained by duplication of a vertex by an edge from

$$
\mathrm{M} \text { in } K_{2,4}
$$

Theorem 2.3 The graph obtained by duplication of a vertex by an edge from N in $K_{2, n}$ is a parity combination cordial graph.

Proof : Let G be a graph obtained by duplication of one of the vertices from N in $K_{2, n}$ by an edge $e=u^{\prime} u_{1}{ }^{\prime \prime}$. Without loss of generality we duplicate v_{1} by an edge $e=v^{\prime} v_{1} v_{1}$. Then the resultant graph G will have $n+4$ vertices and $2 n+3$ edge.

$$
|V(G)|=n+4 ;|E(G)|=2 n+3
$$

We have the following cases :
Case (i): For $n+2 \not \equiv 1(\bmod 4)$

We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+4\}$ as follows

$$
\begin{gathered}
f\left(u_{1}\right)=1 ; \\
f\left(u_{2}\right)=2 ; \\
f\left(v_{1}\right)=3 ; \\
f\left(v_{j}\right)=j+4 ; \forall j=2,3, \ldots, n ; \\
f\left(v_{1}^{\prime}\right)=4 ; \\
f\left(v_{1}^{\prime \prime}\right)=5
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=1$
Hence, G is a PCC-graph.
Case (ii): For $n+2 \equiv 1(\bmod 4)$
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+4\}$ as follows

$$
\begin{gathered}
f\left(u_{1}\right)=1 ; \\
f\left(u_{2}\right)=2 ; \\
f\left(v_{3}\right)=6 ; \\
f\left(v_{j}\right)=j+2 ; j=1,2 ; \\
f\left(v_{j}\right)=j+4 ; j \geq 4 ; \\
f\left(v_{1}^{\prime}\right)=5 ; \\
f\left(v_{1}^{\prime \prime}\right)=7
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=1$
Hence, G is a PCC-graph.

Illustration. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge $e=u^{\prime}{ }_{1} u^{\prime \prime}{ }_{1}$ from N in $K_{2,3}$ is shown in Figure .

Figure 2.4: A PCC-labeling of the graph obtained by duplication of a vertex by an edge from N in $K_{2,3}$

Illustration. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge $e=u_{1}^{\prime} u^{\prime \prime}$ from N in $K_{2,5}$ is shown in Figure .

Figure 2.5: A PCC-labeling of the graph obtained by duplication of a vertex by an edge from N in $K_{2,5}$

Theorem 2.4. The graph obtained by duplication of an edge by a vertex in $K_{2, n}$ is a parity combination cordial graph.

Proof Let G be a graph obtained by duplication of an edge by a vertex. Without loss of generality we duplicate an edge $e=u_{1} v_{1}$ by a vertex w. Then the resultant graph G will have $n+3$ vertices and $2 n+2$ edges.

$$
|V(G)|=n+3 ;|E(G)|=2 n+2
$$

Case (\mathbf{i}) : For $n \not \equiv 0(\bmod 4)$
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows

$$
f\left(u_{1}\right)=1 ;
$$

$$
\begin{gathered}
f\left(u_{2}\right)=2 ; \\
f\left(v_{1}\right)=3 ; \\
f(w)=4 ; \\
f\left(v_{j}\right)=j+3 ; 2 \leq j \leq n
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$
Hence, G is a PCC-graph.

Case (ii): For $n \equiv 0(\bmod 4)$
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows

$$
\begin{gathered}
f\left(u_{1}\right)=1 ; \\
f\left(u_{2}\right)=2 ; \\
f(w)=3 ; \\
f\left(v_{j}\right)=j+3 ; 1 \leq j \leq n
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$
Hence, G is a PCC-graph.

Illustration. A parity combination cordial labeling of the graph obtained by duplication of an edge by a vertex in $K_{2,5}$ is shown in Figure .

Figure 2.6: A PCC-labeling of the graph obtained by duplication of an edge by a vertex in

$$
K_{2,5}
$$

Illustration. A parity combination cordial labeling of the graph obtained by duplication of an edge by a vertex in $K_{2,4}$ is shown in Figure .

Figure 2.7: A PCC-labeling of the graph obtained by duplication of an edge by a vertex in

$$
K_{2,4}
$$

Duplication of graph elements in $K_{1 . n}$

Throughout this work $K_{1, n}$ denotes the bipartite graph in which $M=\left\{u_{0}\right\}$ and $N=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are two partite sets of $K_{1, n}$ such that each edge has one end in M and the other end in N.

Theorem 3.1: The graph obtained by duplication of a vertex in $K_{1, n}$ is a parity combination cordial graph where $n \not \equiv 0(\bmod 4)$.

Proof Let v_{0} be the apex vertex and $v_{1}, v_{2}, v_{3} \ldots v_{n}$ are pendant vertices of $K_{1, n}$. Let G denote the graph obtained by duplication of any vertex v_{j} by a vertex v_{j}^{\prime} in $K_{1, n}$
Depending upon the $\operatorname{deg}\left(v_{j}\right)$ in $K_{1, n}$.
We have the following two cases.
Case (i): Duplication of apex vertex.
The graph obtain by duplication of apex vertex v_{0} in $K_{1, n}$, which is the complete bipartite graph $K_{2, n}$. Hence it is a parity combination cordial graph for $n \not \equiv 0(\bmod 4)$ as proved in theorem 2.1

Case (2): Duplication of pendant vertex.
The graph obtained by duplication of any pendant vertex in $K_{1, n}$, which is again a star graph $K_{1, n+1}$, Hence it is a parity combination cordial graph.

Theorem 3.2: The graph obtained by duplication of an edge in $K_{1, n}$ is a parity combination cordial graph.

Proof Let G be a graph obtained by duplication of the edge $e=v_{0} v_{n}$ by a new edge $e=v_{0}^{\prime} v^{\prime}{ }_{n}$ in $K_{1, n}$
Hence in $G, \operatorname{deg}\left(v_{0}\right)=n, \operatorname{deg}\left(v_{0}^{\prime}\right)=n, \operatorname{deg}\left(v_{n}\right)=1, \operatorname{deg}\left(v_{n}^{\prime}\right)=1$ and $\operatorname{deg}\left(v_{i}\right)=2 \forall i \in\{1,2, \ldots, n-1\}$.

Then the resultant graph G will have $n+3$ vertices and $2 n$ edges.

$$
|V(G)|=n+3 ;|E(G)|=n+3
$$

We consider the following cases:
Case (i) : Form $\not \equiv 0(\bmod 4)$
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows

$$
\begin{aligned}
& f\left(v_{0}\right)=1 \\
& f\left(v_{n}\right)=3 ; \\
& f\left(v_{0}^{\prime}\right)=2 \\
& f\left(v_{n}^{\prime}\right)=4 ;
\end{aligned}
$$

$$
f\left(v_{j}\right)=j+4 ; 2 \leq j \leq n-1
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$
Hence, G is a PCC-graph.

Case (ii) : Forn $\equiv 0(\bmod 4)$
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows

$$
\begin{gathered}
f\left(v_{0}\right)=1 ; \\
f\left(v_{n}\right)=3 ; \\
f\left(v_{0}^{\prime}\right)=2 ; \\
f\left(v_{n}^{\prime}\right)=7 ; \\
f\left(v_{j}\right)=j+3 ; j=1,2,3 ; \\
f\left(v_{j}\right)=j+4 ; 4 \leq j \leq n-1
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$
Hence, G is a PCC-graph.

Illustration. A parity combination cordial labeling of the graph obtained by duplication of an edge in $K_{1,5}$ is shown in Figure .

Figure 3.1: A PCC-labeling of the graph obtained by duplication of an edge in $K_{1,5}$.

Illustration. A parity combination cordial labeling of the graph obtained by duplication of an edge in $K_{1,7}$ is shown in Figure .

Figure 3.2: A PCC-labeling of the graph obtained by duplication of an edge in $K_{1,7}$

Theorem 3.3 The graph obtained by duplication of a vertex by an edge $K_{1, n}$ is a parity combination cordial graph.

Proof Let G be a graph obtained by duplication of a vertex v_{j} by an edge $e=v^{\prime}{ }_{j} v^{\prime \prime}{ }_{j}$ in $K_{1, n}$ then the resultant graph G will have $n+3$ vertices and $n+3$ edges.

$$
|V(G)|=n+3 ;|E(G)|=n+3
$$

We consider the following cases.
Case (i): Duplication of apex vertex v_{0} by an edge $v_{0} v^{\prime \prime}{ }_{0}$.
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows.

$$
\begin{gathered}
f\left(v_{0}\right)=1 ; \\
f\left(v_{0}^{\prime}\right)=2 ; \\
f\left(v_{0}^{\prime \prime}\right)=3 ; \\
f\left(v_{j}\right)=j+3 ; 1 \leq j \leq n
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$ when n is odd and $\left|e_{f}(0)-e_{f}(1)\right|=1$ when n is even Hence, G is a PCC-graph.

Case (ii) : Duplication of pendant vertex v_{j} by an edge $v_{j}{ }_{j} v_{j}{ }_{j}$.
Without loss of generality we assume that $v_{j}=v_{1}$.
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows:

$$
f\left(v_{0}\right)=1
$$

$$
\begin{gathered}
f\left(v_{1}\right)=3 ; \\
f\left(v_{1}^{\prime}\right)=2 ; \\
f\left(v_{1}^{\prime \prime}\right)=4 ; \\
f\left(v_{j}\right)=j+3 ; 2 \leq j \leq n
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$ when n is odd and $\left|e_{f}(0)-e_{f}(1)\right|=1$ when n is even Hence, G is a PCC-graph.

Illustration. A parity combination cordial labeling of the graph obtained by duplication of aapex vertex v_{0} by an edge $v_{0}^{\prime} v^{\prime \prime}$ in $K_{1,5}$ is shown in Figure .

Figure 3.3: A PCC-labeling of the graph obtained by duplication of aapex vertex v_{0} in $K_{1,5}$

Illustration. A parity combination cordial labeling of the graph obtained by duplication of pendant vertex v_{1} by an edge $v_{1}{ }_{1} v^{\prime \prime}{ }_{7}$ in $K_{1,5}$ is shown in Figure .

Figure 3.4: A PCC-labeling of the graph obtained by duplication of aapex vertex v_{1} in $K_{1,7}$

Theorem 3.4. The graph obtained by duplication of an edge by a vertex in $K_{1, n}$ is a prime graph.

Proof Let G be a graph obtained by duplication of the edge $v_{0} v_{1}$ by a vertex $v^{\prime}{ }_{1}$
Now the resultant graph G will have $n+2$ vertices and $n+2$ edges.
We define $f: V(G) \rightarrow\{1,2,3, \ldots, n+2\}$ as follows.

$$
\begin{gathered}
f\left(v_{0}\right)=1 ; \\
f\left(v_{1}\right)=3 ; \\
f\left(v_{1}^{\prime}\right)=2 ; \\
f\left(v_{j}\right)=j+2 ; 2 \leq j \leq n
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=1$ when n is odd and $\left|e_{f}(0)-e_{f}(1)\right|=0$ when n is even Hence, G is a PCC-graph.

Illustration: A parity combination cordial labeling of the graph obtained by duplication of an edge by a vertex in $K_{1,6}$ is shown in Figure .

Figure 3.5: A PCC-labeling of the graph obtained by duplication of an edge by a vertex in

$$
K_{1,6}
$$

Theorem 3.5: Graph obtained by duplication of each vertex by an edge in star $K_{1, n}$ is a parity combination cordial graph.

Proof: Let v_{0} be the apex vertex and $v_{1}, v_{2}, v_{3} \ldots, v_{n}$ be the consecutive pendant vertices of $K_{1, n}$. let G be the graph obtained by duplicating each of the vertices v_{j} in $K_{1, n}$ by an edge $v_{j}^{\prime} v^{\prime \prime}{ }_{j}$ for $j=0,1,2,3, \ldots, n$. Then G is a graph with $3 n+1$ vertices and $4 n$ edges.

$$
|V(G)|=3 n+1 ;|E(G)|=4 n
$$

Define an injective map $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n+1\}$ as

$$
\begin{gathered}
f\left(v_{0}\right)=1 ; \\
f\left(v_{0}^{\prime}\right)=2 ; \\
f\left(v_{0}^{\prime \prime}\right)=3 ; \\
f\left(v_{j}\right)=3 j+1 ; 1 \leq j \leq n \\
f\left(v_{j}^{\prime}\right)=3 j+2 ; 1 \leq j \leq n \\
f\left(v_{j}^{\prime \prime}\right)=3 j+3 ; 1 \leq j \leq n
\end{gathered}
$$

Here $e_{f}(0)=2 n ; n \equiv 0(\bmod 4)$
and $e_{f}(0)=2 n-1$;otherwise

Here $e_{f}(1)=2 n-1 ; n \equiv 0(\bmod 4)$
and $e_{f}(0)=2 n$;otherwise

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=1$.

As the labeling defined above satisfies the conditions of parity combination cordial labeling and the graph under consideration is parity combination cordial graph in both cases.

Hence, G is a parity combination cordial graph.

Theorem 3.6: Graph obtained by duplication of each edge by a vertex in star $K_{1, n}$ is a parity combination cordial graph.

Proof: Let v_{0} be the apex vertex and $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ be the consecutive pendant vertices of $K_{1, n}$. let G be the graph obtained by duplication of each of the edges $v_{0} v_{j}$ in $K_{1, n}$ by a vertex v_{j}^{\prime}. Then G is a graph with $2 n+1$ vertices and $3 n$ edges.

$$
|V(G)|=2 n+1 ;|E(G)|=3 n
$$

Define an injective map $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n+1\}$ as

$$
\begin{gathered}
f\left(v_{0}\right)=3 ; \\
f\left(v_{1}\right)=1 ; \\
f\left(v_{2}\right)=2 ; \\
f\left(v_{j}\right)=2 j ; 2 \leq j \leq n \\
f\left(v_{2 j-1}\right)=2 j+1 ; 2 \leq j \leq n
\end{gathered}
$$

Then we get $\left|e_{f}(0)-e_{f}(1)\right|=0$ if n is odd and $\left|e_{f}(0)-e_{f}(1)\right|=1$ if n is even.
As the labeling defined above satisfies the conditions of parity combination cordial labeling and the graph under consideration is parity combination cordial graph in both cases.

Hence, G is a parity combination cordial graph.

Conclusion

Here we investigate parity combination cordial labelling for some graph obtained by duplication of graph elements on $K_{1, n}$.and $K_{2, n}$.

References

[1]. D.M.Burton, elementary number theory, Tata McGraw Hill Edition, New Delhi, (2010).
[2]. J.A.Gallian, a dynamic survey of graph labelling,the elementary journal of combinatorics (2018), \#DS6
[3]. I. Cahit, Cordial Graph: A Weaker Version of Graceful and Harmonious Graph, Ars Combin.,23, (1987), 201-207
[4]. F. Harary, Graph Theory, Narosa Publishing House, New Delhi (2001).
[5]. S. M. Hegde and SudhakarShetty, Combinatorial Labeling of Graphs, Applied Mathematics E-Notes, 6(2006), 251-258.
[6]. A. Rosa, On Certain Valuations of The Vertices of A Graph, Theory of Graphs(Internat.
Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris, (1967), 349-355.
[7]. M.A.Seoud and A.E.I.AbdelMaqsoud, On Cordial And Balanced Labeling of Graphs, J. Egyptain Math. Soc., 7(1999), 127-135.
[8]. S. C. Shee and Y. S. Ho, The Cordiality of One-point Union of n-copies of A Graph, Discrete Math., 117(1993), 225-243.
[9]. R. Ponraj, S.Sathish Narayanan and A. M. S. Ramasamy, Parity Combination Cordial Labeling of Graphs, Jordan Journal of Mathematics and statistics (JJMS), 8(4)(2015), 293-308.
[10]. R. Ponraj, Rajpal Singh and S. Sathish Narayanan, On Parity Combination Cordial Graphs, Palestine Journal of Mathematics, 6(1)(2017), 211-218.
[11]. S. K. Vaidya and U. M. Prajapati, Prime Labeling In The Context of Duplication of Graph Elements, International Journal of Mathematics and Soft Computing,3(1)(2013), 13-20.
[12] D. G. Adalja , G. V. Ghodasara, Sum Divisor Cordial Labeling in the Context of Duplication of Graph Elements,Mathematics Today. 35 (2019) 61-83
[13] U M Prajapati, B N Suthar, Prime labeling in the context of duplication of graph elements in K2,n, International Journal of Mathematics and Soft Computing. 7(1)(2017), 117 -125 .

