

# Parity Combination Cordial Labeling for Some Standard Graph

Soni Devyani Vinodkumar(1), Dr.Ritu Khanna(2), Dr. P.H. Bhathawala(3)

(1)Research Scholar at Pacific University, Udaipur

(2)Professor, Department of Mathematics, Pacific University, Udaipur.

(3)Professor & Former Head, Department of Mathematics, V.N.S.G. University, Surat.

### Abstract:

In this paper we investigate parity combination cordial labeling for some graphs obtained by duplication of graph elements and also we drive some results for  $K_{1,n}$  and  $K_{2,n}$ .

## **Keywords:**

Graph labeling, parity combination cordial labeling, parity combination cordial graph, duplication.

### **1.Introduction**

All graph in this paper are finite, simple, undirected graph G = (V, E), With the vertex set Vand the edge set E If the vertices of the graph are assigned values subject to certain conditions then it is known as graph labeling. Throughout this work  $K_{2,n}$  denotes the bipartite graph in which  $M = \{u_1, u_2\}$  and  $N = \{v_1, v_2, ..., v_n\}$  are two partite sets of  $K_{2,n}$  such that each edge has one end in M and the other end in N,  $K_{1,n}$  denotes the bipartite graph in which  $M = \{v_0\}$ and  $N = \{v_1, v_2, ..., v_n\}$  are two partite sets of  $K_{1,n}$  such that each edge has one end in M and the other end in N,  $C_n$  denotes the cycle with n vertices and  $P_n$  denotes the path on n vertices. The notion of parity combination cordial labeling was introduced by R. Ponraj, S. Narayanan and Ramasamy [9]. In this paper we investigate parity combination cordial labelings for a duplication of graph elements in  $K_{1,n}$  and  $K_{2,n}$ 

**Definition 1.1:** let *G* be a (p, q) graph. Let *f* be an injective map from V(G)V(G) to  $\{1, 2, 3, ..., P\}$ . For each edge *xy*, assign the label  $\frac{x}{y}$  or  $\frac{y}{x}$  according as x > y or y > x, *f* is called a parity combination cordial labeling (PCClabeling) if *f* is a one to one map and

 $|e_f(0) - e_f(1)| \le 1$ , where  $e_f(0)$  and  $e_f(1)$  denote the number of edges labeled with an even number and odd number respectively. A graph with a parity combination cordial labeling is called a parity combination cordial graph (PCC- graph).

**Definition 1.2:** Duplication of a vertex v of graph G produces a new graph G' by adding a new vertex v' such that N(v') = N(v). In other words a vertex v' is said to be duplication of v if all the vertices which are adjacent to v in G are also adjacent to v' in G'.

**Definition 1.3:** Duplication of a vertex  $v_k$  by a new edge  $e = v'_k v''_k$  in a graph *G* produced a new graph *G*' such that  $N(v'_k) = \{v_k, v''_k\}$  and  $N(v''_k) = \{v_k, v'_k\}$ .

**Definition 1.4:** Duplication of edge e = uv by a new vertex w in a graph G produces a new graph G' such that  $N(w) = \{u, v\}$ .

**Definition 1.5:** Duplication of an edge e = uv of a graph *G* produces a new graph *G*' by adding an edge e' = u'v' such that  $N(u') = N(u) \cup \{v'\} - \{v\}$  and  $N(v') = N(v) \cup \{u'\} - \{u\}$ .

#### 2. Main results

# **Duplication of graph elements in** $K_{2n}$

Throughout this work  $K_{2,n}$  denotes the bipartite graph in which  $M = \{u_1, u_2\}$  and  $N = \{v_1, v_2, ..., v_n\}$  are two partite sets of  $K_{2,n}$  such that each edge has one end in M and the other end in N.

**Theorem 2.1** The graph obtained by duplication of a vertex from *N* in  $K_{2,n}$  is a parity combination cordial graph where  $n \not\equiv 0 \pmod{4}$ .

**Proof** The result is obvious for n = 1 as when we duplicate  $v_1$ , the resulting graph will be a cycle  $C_4$ , which is a parity combination cordial graph.

Let  $u_1$ ,  $u_2$ ,  $v_1$ ,  $v_2$ ,  $v_3$ ...  $v_n$  be the consecutive vertices of  $K_{2,n}$  and G be the graph obtained by duplication of the vertex  $v_j$  by a vertex  $v'_j$ . Then G is a graph with n + 3 vertices and 2(n + 1) edge.

$$|V(G)| = n + 3; |E(G)| = 2(n + 1)$$

Then define  $f: V(G) \rightarrow \{1, 2, 3, \dots, n + 3\}$  as follow

$$f(u_{1}) = 1$$

$$f(u_{2}) = 2$$

$$f(v_{j}) = j + 2; \forall j = 1, 2, ..., n$$

$$f(v'_{j}) = n + 3$$

Then we get  $|e_f(0) - e_f(1)| = 0$ . Hence, *G* is a PCC-graph.

**Illustration:** A parity combination cordial labeling of the graph obtained by duplication of a vertex from N in  $K_{2,5}$  is shown in Figure .



Figure 2.1: A PCC-labeling of the graph obtained by duplication of a vertex from N in  $K_{25}$ 

**Theorem 2.2** The graph obtained by duplication of a vertex by an edge from M in  $K_{2,n}$  is a parity combination cordial graph.

**Proof**: Let *G* be a graph obtained by duplication of one of the vertices from *M* in  $K_{2,n}$  by an edge  $e = u'_1 u''_1$ . Without loss of generality we duplicate  $u_1$  by an edge  $e = u'_1 u''_1$ . Then the resultant graph *G* will have n + 4 vertices and 2n + 3 edges.

$$|V(G)| = n + 4; |E(G)| = 2n + 3$$

We have the following cases

**Case (i):** For n = 1, 5

We define  $f: V(G) \rightarrow \{1, 2, 3, \dots, n + 4\}$  as follows

$$f(u_{1}) = 1;$$

$$f(u_{2}) = 3;$$

$$f(v_{1}) = 2;$$

$$f(v_{j}) = j + 2; \forall j = 2, 3, ..., n;$$

$$f(u'_{1}) = n + 3;$$

$$f(u'_{1}) = n + 4$$

Then we get  $\left| e_f(0) - e_f(1) \right| = 1$ 

Hence, G is a PCC-graph.

Case (ii): F or  $n \neq 1, 5$ 

We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 4\}$  as follows

$$f(u_{1}) = 1;$$

$$f(u_{2}) = 2;$$

$$f(v_{j}) = j + 2; \forall j = 1, 2, 3, ..., n;$$

$$f(u'_{1}) = n + 3;$$

$$f(u''_{1}) = n + 4$$

Then we get  $|e_f(0) - e_f(1)| = 1$ Hence, *G* is a PCC-graph.

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge  $e = u'_1 u''_1$  from M in  $K_{2.5}$  is shown in Figure .



Figure 2.2: A PCC-labeling of the graph obtained by duplication of a vertex by an from M in  $K_{2.5}$ 

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge  $e = u'_1 u''_1$  from M in  $K_{2,4}$  is shown in Figure



Figure 2.3: A PCC-labeling of the graph obtained by duplication of a vertex by an edge from M in  $K_{2,4}$ 

**Theorem 2.3** The graph obtained by duplication of a vertex by an edge from *N* in  $K_{2,n}$  is a parity combination cordial graph.

**Proof**: Let *G* be a graph obtained by duplication of one of the vertices from *N* in  $K_{2,n}$  by an edge  $e = u'_1 u''_1$ . Without loss of generality we duplicate  $v_1$  by an edge  $e = v'_1 v''_1$ . Then the resultant graph *G* will have n + 4 vertices and 2n + 3 edge.

$$|V(G)| = n + 4; |E(G)| = 2n + 3$$

We have the following cases :

IJSEAS

**Case (i):** For  $n + 2 \not\equiv 1 \pmod{4}$ 



We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 4\}$  as follows

$$f(u_{1}) = 1;$$

$$f(u_{2}) = 2;$$

$$f(v_{1}) = 3;$$

$$f(v_{j}) = j + 4; \forall j = 2, 3, ..., n;$$

$$f(v'_{1}) = 4;$$

$$f(v'_{1}) = 5$$

Then we get  $|e_{f}(0) - e_{f}(1)| = 1$ 

Hence, G is a PCC-graph.

Case (ii): For  $n + 2 \equiv 1 \pmod{4}$ 

We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 4\}$  as follows

$$f(u_{1}) = 1;$$

$$f(u_{2}) = 2;$$

$$f(v_{3}) = 6;$$

$$f(v_{j}) = j + 2; j = 1, 2;$$

$$f(v_{j}) = j + 4; j \ge 4;$$

$$f(v_{1}) = 5;$$

$$f(v_{1}') = 7$$

Then we get  $|e_{f}(0) - e_{f}(1)| = 1$ 

Hence, *G* is a PCC-graph.

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge  $e = u'_1 u''_1$  from N in  $K_{2,3}$  is shown in Figure .



IJSEAS

Figure 2.4: A PCC-labeling of the graph obtained by duplication of a vertex by an edge from N in  $K_{2,3}$ 

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of a vertex by an edge  $e = u'_1 u''_1$  from N in  $K_{2,5}$  is shown in Figure .



Figure 2.5: A PCC-labeling of the graph obtained by duplication of a vertex by an edge from N in  $K_{2,5}$ 

**Theorem 2.4**. The graph obtained by duplication of an edge by a vertex in  $K_{2,n}$  is a parity combination cordial graph.

**Proof** Let *G* be a graph obtained by duplication of an edge by a vertex. Without loss of generality we duplicate an edge  $e = u_1 v_1$  by a vertex *w*. Then the resultant graph *G* will have n + 3 vertices and 2n + 2 edges.

$$|V(G)| = n + 3; |E(G)| = 2n + 2$$

Case (i): For  $n \not\equiv 0 \pmod{4}$ We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 3\}$  as follows

$$f(u_1) = 1;$$



$$f(u_{2}) = 2;$$
  

$$f(v_{1}) = 3;$$
  

$$f(w) = 4;$$
  

$$f(v_{j}) = j + 3; 2 \le j \le n$$

Then we get  $|e_{f}(0) - e_{f}(1)| = 0$ 

Hence, *G* is a PCC-graph.

Case (ii): For  $n \equiv 0 \pmod{4}$ We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 3\}$  as follows  $f(u_1) = 1;$ 

$$f(u_2) = 2;$$
  
 $f(w) = 3;$   
 $f(v_j) = j + 3; \ 1 \le j \le m$ 

Then we get  $|e_{f}(0) - e_{f}(1)| = 0$ 

Hence, *G* is a PCC-graph.

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of an edge by a vertex in  $K_{2,5}$  is shown in Figure .



Figure 2.6: A PCC-labeling of the graph obtained by duplication of an edge by a vertex in

 $K_{2,5}$ 

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of an edge by a vertex in  $K_{2,4}$  is shown in Figure .



Figure 2.7: A PCC-labeling of the graph obtained by duplication of an edge by a vertex in  $K_{2,4}$ .

# **Duplication of graph elements in** $K_{1,n}$

Throughout this work  $K_{1,n}$  denotes the bipartite graph in which  $M = \{u_0\}$  and  $N = \{v_1, v_2, ..., v_n\}$  are two partite sets of  $K_{1,n}$  such that each edge has one end in M and the other end in N.



**Theorem 3.1**: The graph obtained by duplication of a vertex in  $K_{1,n}$  is a parity combination cordial graph where  $n \not\equiv 0 \pmod{4}$ .

**Proof** Let  $v_0$  be the apex vertex and  $v_1, v_2, v_3 \dots v_n$  are pendant vertices of  $K_{1,n}$ . Let G denote the graph obtained by duplication of any vertex  $v_j$  by a vertex  $v'_j$  in  $K_{1,n}$ . Depending upon the  $deg(v_j)$  in  $K_{1,n}$ .

We have the following two cases.

Case (i): Duplication of apex vertex.

The graph obtain by duplication of apex vertex  $v_0$  in  $K_{1,n}$ , which is the complete bipartite graph  $K_{2,n}$ . Hence it is a parity combination cordial graph for  $n \not\equiv 0 \pmod{4}$  as proved in theorem 2.1

Case (2): Duplication of pendant vertex.

The graph obtained by duplication of any pendant vertex in  $K_{1,n}$ , which is again a star graph

 $K_{1,n+1}$ , Hence it is a parity combination cordial graph.

**Theorem 3.2**: The graph obtained by duplication of an edge in  $K_{1,n}$  is a parity combination cordial graph.

**Proof** Let G be a graph obtained by duplication of the edge  $e = v_0 v_n$  by a new edge

$$e = v'_0 v'_n \text{ in } K_{1,n}$$
  
Hence in  $G$ ,  $deg(v_0) = n$ ,  $deg(v'_0) = n$ ,  $deg(v_n) = 1$ ,  $deg(v'_n) = 1$  and  $deg(v_i) = 2 \ \forall i \in \{1, 2, ..., n - 1\}.$ 

Then the resultant graph G will have n + 3 vertices and 2n edges.

$$|V(G)| = n + 3; |E(G)| = n + 3$$

We consider the following cases:

**Case (i) :** For  $n \not\equiv 0 \pmod{4}$ 

We define  $f: V(G) \rightarrow \{1, 2, 3, \dots, n + 3\}$  as follows

$$f(v_{0}) = 1;$$
  

$$f(v_{n}) = 3;$$
  

$$f(v_{0}) = 2;$$
  

$$f(v_{n}) = 4;$$



$$f(v_j) = j + 4; \ 2 \le j \le n - 1$$

Then we get  $|e_{f}(0) - e_{f}(1)| = 0$ 

Hence, G is a PCC-graph.

Case (ii): For  $\equiv 0 \pmod{4}$ 

We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 3\}$  as follows

$$f(v_{0}) = 1;$$
  

$$f(v_{n}) = 3;$$
  

$$f(v'_{0}) = 2;$$
  

$$f(v'_{n}) = 7;$$
  

$$f(v_{j}) = j + 3; j = 1, 2, 3;$$
  

$$f(v_{j}) = j + 4; 4 \le j \le n - 1$$

Then we get  $|e_{f}(0) - e_{f}(1)| = 0$ 

Hence, G is a PCC-graph.

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of an edge in  $K_{1,5}$  is shown in Figure .



Figure 3.1: A PCC-labeling of the graph obtained by duplication of an edge in  $K_{1.5}$ .

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of an edge in  $K_{1,7}$  is shown in Figure .



Figure 3.2: A PCC-labeling of the graph obtained by duplication of an edge in  $K_{1,7}$ 

**Theorem 3.3** The graph obtained by duplication of a vertex by an edge  $K_{1,n}$  is a parity combination cordial graph.

**Proof** Let *G* be a graph obtained by duplication of a vertex  $v_j$  by an edge  $e = v'_j v''_j$  in  $K_{1,n}$  then the resultant graph *G* will have n + 3 vertices and n + 3 edges.

$$|V(G)| = n + 3; |E(G)| = n + 3$$

We consider the following cases.

IJSEAS

**Case (i) :** Duplication of apex vertex  $v_0$  by an edge  $v'_0 v''_0$ . We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 3\}$  as follows.

$$f(v_{0}) = 1;$$
  

$$f(v'_{0}) = 2;$$
  

$$f(v'_{0}) = 3;$$
  

$$f(v_{j}) = j + 3; 1 \le j \le n$$

Then we get  $|e_f(0) - e_f(1)| = 0$  when *n* is odd and  $|e_f(0) - e_f(1)| = 1$  when *n* is even Hence, *G* is a PCC-graph.

**Case (ii) :** Duplication of pendant vertex  $v_j$  by an edge  $v'_j v''_j$ . Without loss of generality we assume that  $v_j = v_1$ . We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 3\}$  as follows:

$$f(v_0) = 1;$$



$$f(v_1) = 3;$$
  

$$f(v'_1) = 2;$$
  

$$f(v''_1) = 4;$$
  

$$f(v_j) = j + 3; 2 \le j \le n$$

Then we get  $|e_f(0) - e_f(1)| = 0$  when *n* is odd and  $|e_f(0) - e_f(1)| = 1$  when *n* is even Hence, *G* is a PCC-graph.

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of aapex vertex  $v_0$  by an edge  $v'_0 v''_0$  in  $K_{1,5}$  is shown in Figure .



Figure 3.3: A PCC-labeling of the graph obtained by duplication of aapex vertex  $v_0$  in  $K_{1,5}$ 

**Illustration**. A parity combination cordial labeling of the graph obtained by duplication of pendant vertex  $v_1$  by an edge  $v'_1 v''_7$  in  $K_{1,5}$  is shown in Figure .





Figure 3.4: A PCC-labeling of the graph obtained by duplication of aapex vertex  $v_1$  in  $K_{1,7}$ 

**Theorem 3.4.** The graph obtained by duplication of an edge by a vertex in  $K_{1,n}$  is a prime graph.

**Proof** Let *G* be a graph obtained by duplication of the edge  $v_0 v_1$  by a vertex  $v'_1$ Now the resultant graph G will have n + 2 vertices and n + 2 edges. We define  $f: V(G) \rightarrow \{1, 2, 3, ..., n + 2\}$  as follows.

$$f(v_{0}) = 1;$$
  

$$f(v_{1}) = 3;$$
  

$$f(v'_{1}) = 2;$$
  

$$f(v_{j}) = j + 2; 2 \le j \le n$$

Then we get  $|e_f(0) - e_f(1)| = 1$  when *n* is odd and  $|e_f(0) - e_f(1)| = 0$  when *n* is even Hence, *G* is a PCC-graph.

**Illustration:** A parity combination cordial labeling of the graph obtained by duplication of an edge by a vertex in  $K_{1,6}$  is shown in Figure .





Figure 3.5: A PCC-labeling of the graph obtained by duplication of an edge by a vertex in  $K_{1,6}$ 

**Theorem 3.5:** Graph obtained by duplication of each vertex by an edge in star  $K_{1,n}$  is a parity combination cordial graph.

**Proof:** Let  $v_0$  be the apex vertex and  $v_1, v_2, v_3, ..., v_n$  be the consecutive pendant vertices of  $K_{1,n}$ . let G be the graph obtained by duplicating each of the vertices  $v_j$  in  $K_{1,n}$  by an edge  $v'_j v''_j$  for j = 0, 1, 2, 3, ..., n. Then G is a graph with 3n + 1 vertices and 4n edges.

$$|V(G)| = 3n + 1; |E(G)| = 4n$$

Define an injective map  $f: V(G) \rightarrow \{1, 2, 3, ..., 3n + 1\}$ as

$$f(v_0) = 1;$$
  

$$f(v_0) = 2;$$
  

$$f(v_0) = 3;$$
  

$$f(v_j) = 3j + 1; \ 1 \le j \le n$$
  

$$f(v_j) = 3j + 2; \ 1 \le j \le n$$
  

$$f(v_j) = 3j + 3; \ 1 \le j \le n$$

Here  $e_f(0) = 2n$ ;  $n \equiv 0 \pmod{4}$ 



and  $e_f(0) = 2n - 1$ ; otherwise

Here  $e_f(1) = 2n - 1$ ;  $n \equiv 0 \pmod{4}$ and  $e_f(0) = 2n$ ; otherwise

Then we get  $|e_{f}(0) - e_{f}(1)| = 1$ .

As the labeling defined above satisfies the conditions of parity combination cordial labeling and the graph under consideration is parity combination cordial graph in both cases. Hence, G is a parity combination cordial graph.

**Theorem 3.6:** Graph obtained by duplication of each edge by a vertex in star  $K_{1,n}$  is a parity combination cordial graph.

**Proof:** Let  $v_0$  be the apex vertex and  $v_1, v_2, v_3, ..., v_n$  be the consecutive pendant vertices of  $K_{1,n}$ . let *G* be the graph obtained by duplication of each of the edges  $v_0 v_j$  in  $K_{1,n}$  by a vertex  $v'_{i}$ . Then *G* is a graph with 2n + 1 vertices and 3n edges.

$$|V(G)| = 2n + 1; |E(G)| = 3n$$
  
Define an injective map  $f: V(G) \rightarrow \{1, 2, 3, ..., 2n + 1\}$  as

$$\begin{split} f(v_0) &= 3; \\ f(v_1) &= 1; \\ f(v_2) &= 2; \\ f(v_j) &= 2j; \ 2 \leq j \leq n \\ f(v_{2j-1}) &= 2j + 1; \ 2 \leq j \leq n \end{split}$$

Then we get  $|e_f(0) - e_f(1)| = 0$  if *n* is odd and  $|e_f(0) - e_f(1)| = 1$  if *n* is even.

As the labeling defined above satisfies the conditions of parity combination cordial labeling and the graph under consideration is parity combination cordial graph in both cases. Hence, G is a parity combination cordial graph.



# Conclusion

Here we investigate parity combination cordial labelling for some graph obtained by duplication of graph elements on  $K_{1n}$  and  $K_{2n}$ .

## References

[1]. D.M.Burton, elementary number theory, Tata McGraw Hill Edition, New Delhi, (2010).

[2]. J.A.Gallian, a dynamic survey of graph labelling,the elementary journal of combinatorics (2018), #DS6

[3]. I. Cahit, Cordial Graph: A Weaker Version of Graceful and Harmonious Graph, Ars Combin.,23, (1987), 201-207

[4]. F. Harary, Graph Theory, Narosa Publishing House, New Delhi (2001).

[5]. S. M. Hegde and SudhakarShetty, Combinatorial Labeling of Graphs, Applied Mathematics E-Notes, 6(2006), 251-258.

[6]. A. Rosa, On Certain Valuations of The Vertices of A Graph, Theory of Graphs(Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris, (1967), 349-355.

[7]. M.A.Seoud and A.E.I.AbdelMaqsoud, On Cordial And Balanced Labeling of Graphs, J. Egyptain Math. Soc., 7(1999), 127-135.

[8]. S. C. Shee and Y. S. Ho, The Cordiality of One-point Union of n-copies of A Graph, Discrete Math., 117(1993), 225-243.

[9]. R. Ponraj, S.Sathish Narayanan and A. M. S. Ramasamy, Parity Combination Cordial Labeling of Graphs, Jordan Journal of Mathematics and statistics (JJMS), 8(4)(2015), 293-308.

[10]. R. Ponraj, Rajpal Singh and S. Sathish Narayanan, On Parity Combination Cordial Graphs, Palestine Journal of Mathematics, 6(1)(2017), 211-218.

[11]. S. K. Vaidya and U. M. Prajapati, Prime Labeling In The Context of Duplication of Graph Elements, International Journal of Mathematics and Soft Computing, 3(1)(2013), 13-20.

[12] D. G. Adalja, G. V. Ghodasara, Sum Divisor Cordial Labeling in the Context of Duplication of Graph Elements, Mathematics Today.35 (2019) 61-83 [13] U M Prajapati , B N Suthar, Prime labeling in the context of duplication of graph elements in K2,n, International Journal of Mathematics and Soft Computing. 7(1)(2017), 117 - 125.